CNRS Technologies

Find the best CNRS technologies to boost your innovative project.

Les brevets les plus récents

You are a research scientist?

We can guide you through the whole technology transfer process.

See all our services

You are a corporate player?

Thanks to our expertise, our network and our know-how of the innovation ecosystem, we support you throughout your project.

Contact us

Follow our news and upcoming events

Discover CNRS technologies

Meet our team

Fermer

Solar thermal flame

Référence

04149-01

Statut des brevets

French patent application FR1152862 filed on Avril 4th 2011 entitled “Système solaire permettant de reproduire l’effet d’une flamme de combustion”

Inventeurs

Sylvain RODAT
Stéphane ABANADES
Gilles FLAMANT

Statut commercial

Exclusive or non-exclusive licenses, Collaborative agreement

Laboratoire

PROMES, a CNRS laboratory (UPR 8521) in Odeillo-Perpignan, France, www.promes.cnrs.fr/

Description

CONTEXT

Volumetric heating in nowadays industrial processes is done either with plasma reactors or by combustion of fossil fuels. Concentrated solar energy can also be an innovative option. Solar receptors/reactors are of two types:

* Direct heating: particle suspensions are irradiated. During the volumetric heating process the system may include a transparent window to separate the high temperature zone from the atmosphere. This is a real limitation of the technology due to thermomechanical constraints

* Indirect heating: an exchanger (tubes, printed circuit heat exchanger) is required to absorb the incident solar energy and so the energy is transferred through a surface (and not in the volume)

Existing solar systems do not allow a direct volumetric heat input

TECHNICAL DESCRIPTION

The present development proposes to associate a high temperature solar receptor and a reactor. A heat transfer fluid is heated at high temperature in the solar receptor and then injected at the right pressure in the reaction chamber as for a combustion flame. The control  of the products to be reacted (reactants) is done as in any reactor and is adjusted according to the solar flux. Reactor geometries are not limited (one or more injection points).

BENEFITS

Alternative to high temperature (1 000-2 500°C) sources
No polluting species produced (CO2,CO,NOx,SOx) and no product contamination through combustion gases.
Solar energy is brought in the volume thanks to the heat transfer fluid.

INDUSTRIAL APPLICATIONS

Applications include any high temperature chemical reactions but can be extended to the  replacement of any industrial flames in metallurgy, glass industry, cement industry…

DEVELOPMENT STAGE

A first prototype (50 kWth) was successfully tested for methane cracking.

For further information, please contact us (Ref 04149-01)

 


Besoin de plus d'informations ?

Nous contacter
Fermer

Contactez-nous

  • This field is for validation purposes and should be left unchanged.
Fermer

Les brevets les plus récents