CNRS Technologies

Find the best CNRS technologies to boost your innovative project.

Les brevets les plus récents

You are a research scientist?

We can guide you through the whole technology transfer process.

See all our services

You are a corporate player?

Thanks to our expertise, our network and our know-how of the innovation ecosystem, we support you throughout your project.

Contact us

Follow our news and upcoming events

Discover CNRS technologies

Meet our team


New anode material for Na-ion batteries




Anode, Na-ion, titanate

Statut des brevets

French patent application FR1156007 filed on July 4th, 2011 and entitled «Matière active d’électrode pour une batterie aux ions sodium»


Rosa Maria PALACIN

Statut commercial

Exclusive or non-exclusive license




There are currently some discussion about Li-ion battery especially related to their cost. Raw lithium material costs is almost multiply by 2 since the first Li-ion battery in 1991 and is still increasing due to the market demand. In addition there is some concern about the lithium ressource which is located only in a few places and which could not cope with the dramatically increasing demand due to auomotive transportation and grid related applications.
Na-ion batteries could become an alternative thank to the better availability of Na and the lower cost of its precursors.
Lot of work was dedicated to cathode material but graphite whch is widely used as anode, is not as suitable as for Li due to the size difference of ionic radius of Na ion (>55% Li-ion).
Current material such as hard carbon or even Sb are not satisfactory. Hard carbon exhibits a capacity fading due to passivation layer onto the carbon surface.


In the present work, the inventors have developped a new anodic material for Na-ion battery based on derivative of Na2Ti3O7.
The active material of the electrode material is composed of an oxide with astructure corresponding to the layered structure of the compound Na2Ti3O7, said oxide conforming to the formula NaxTi(IV)aTi(III)bMcO7, in which x denotes the number of Na+ ions inserted between the layers, per Ti3O7 structural unit, with 0<x≤5; Ti(IV) and Ti(III) represent titanium in the oxidation states IV and III, respectively; M represents one or more elements selected from 3d transition metalsand 4d transition metals.
The electrode material is obtained by electrochemical reduction of an oxide Nax’Ti(IV)a’McO7.


Low cost precursor materials
Availibility of sodium
No need of high temperature such as in Zebra type batteries


Suitable process for 1-2-gram scale synthesis;


Na-ion anode in replacement of hard carbon

For further information, please contact us (Ref 04634-01)         

Besoin de plus d'informations ?

Nous contacter


  • This field is for validation purposes and should be left unchanged.

Les brevets les plus récents